首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   39篇
  国内免费   6篇
  2021年   3篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   8篇
  2014年   9篇
  2013年   13篇
  2012年   15篇
  2011年   12篇
  2010年   3篇
  2009年   6篇
  2008年   19篇
  2007年   12篇
  2006年   9篇
  2005年   10篇
  2004年   15篇
  2003年   12篇
  2002年   11篇
  2001年   12篇
  2000年   6篇
  1999年   12篇
  1998年   7篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   14篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   8篇
  1983年   8篇
  1982年   5篇
  1981年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1967年   2篇
  1958年   2篇
  1957年   2篇
  1941年   2篇
  1925年   2篇
排序方式: 共有376条查询结果,搜索用时 62 毫秒
101.
The mechanisms involved in the targeting of neuronal nicotinic acetylcholine receptors (AChRs), critical for their functional organization at neuronal synapses, are not well understood. We have identified a novel functional association between α4β2 AChRs and the presynaptic cell adhesion molecule, neurexin-1β. In non-neuronal tsA 201 cells, recombinant neurexin-1β and mature α4β2 AChRs form complexes. α4β2 AChRs and neurexin-1β also coimmunoprecipitate from rat brain lysates. When exogenous α4β2 AChRs and neurexin-1β are coexpressed in hippocampal neurons, they are robustly targeted to hemi-synapses formed between these neurons and cocultured tsA 201 cells expressing neuroligin-1, a postsynaptic binding partner of neurexin-1β. The extent of synaptic targeting is significantly reduced in similar experiments using a mutant neurexin-1β lacking the extracellular domain. Additionally, when α4β2 AChRs, α7 AChRs, and neurexin-1β are coexpressed in the same neuron, only the α4β2 AChR colocalizes with neurexin-1β at presynaptic terminals. Collectively, these data suggest that neurexin-1β targets α4β2 AChRs to presynaptic terminals, which mature by trans-synaptic interactions between neurexins and neuroligins. Interestingly, human neurexin-1 gene dysfunctions have been implicated in nicotine dependence and in autism spectrum disorders. Our results provide novel insights as to possible mechanisms by which dysfunctional neurexins, through downstream effects on α4β2 AChRs, may contribute to the etiology of these neurological disorders.The clustering of ion channels or receptors and precise targeting to pre- and postsynaptic specializations in neurons is critical to efficiently regulate synaptic transmission. Within the central nervous system, neuronal nicotinic acetylcholine receptors (AChRs)5 regulate the release of neurotransmitters at presynaptic sites (1) and mediate fast synaptic transmission at postsynaptic sites of neurons (2). These receptors are part of a family of acetylcholine-gated ion channels that are assembled from various combinations of α2–α10 and β2–β4 subunits (3). AChRs participate in the regulation of locomotion, affect, reward, analgesia, anxiety, learning, and attention (4, 5).The α4β2 subtype is the most abundant AChR receptor expressed in the brain. Multiple lines of evidence support a major role for α4β2 AChRs in nicotine addiction. α4β2 AChRs show high affinity for nicotine (6) and are located on the dopaminergic projections of ventral tegmental area neurons to the medium spiny neurons of the nucleus accumbens (7, 8). Furthermore, β2 AChR subunit knock-out mice lose their sensitivity to nicotine in passive avoidance tasks (9) and show attenuated self-administration of nicotine (10). α4 AChR subunit knock-out mice also exhibit a loss of tonic control of striatal basal dopamine release (11). Finally, experiments with knock-in mice expressing α4β2 AChRs hypersensitive to nicotine demonstrate that α4β2 AChRs indeed mediate the essential features of nicotine addiction including reward, tolerance, and sensitization (12). High resolution ultrastructural studies show that α4 subunit-containing AChRs are clustered at dopaminergic axonal terminals (13), and a sequence motif has been identified within the α4 AChR subunit cytoplasmic domain that is essential for receptor trafficking to axons (14). However, the mechanisms underlying the targeting and clustering of α4β2 AChRs to presynaptic sites in neurons remain elusive.Recently, bi-directional interactions between neurexins and neuroligins have been shown to promote synapse assembly and maturation by fostering pre- and postsynaptic differentiation (reviewed in Refs. 1517). The neurexins are encoded by three genes corresponding to neurexins I–III (18, 19), each encoding longer α-neurexins and shorter β-neurexins, because of differential promoter use. Neurexins recruit N- and P/Q-type calcium channels via scaffolding proteins, including calmodulin-associated serine/threonine kinase (20), to active zones of presynaptic terminals (21, 22). Recently, α-neurexins were shown to specifically induce GABAergic postsynaptic differentiation (23). Neuroligins, postsynaptic binding partners of neurexins, cluster N-methyl-d-aspartate receptors and GABAA receptors by recruiting the scaffolding proteins PSD-95 (post-synaptic density 95) and gephyrin, respectively (24, 25). Interestingly, neurexins and neuroligins also modulate the postsynaptic clustering of α3-containing AChRs in chick ciliary ganglia (26, 27). In this study, using multiple experimental strategies, we provide evidence for the formation of complexes between neurexin-1β and α4β2 AChRs and a role for neurexin in the targeting of α4β2 AChRs to presynaptic terminals of neurons.  相似文献   
102.

Background

Recent population-based estimates in a Dhaka low-income community suggest that influenza was prevalent among children. To explore the epidemiology and seasonality of influenza throughout the country and among all age groups, we established nationally representative hospital-based surveillance necessary to guide influenza prevention and control efforts.

Methodolgy/Principal Findings

We conducted influenza-like illness and severe acute respiratory illness sentinel surveillance in 12 hospitals across Bangladesh during May 2007–December 2008. We collected specimens from 3,699 patients, 385 (10%) which were influenza positive by real time RT-PCR. Among the sample-positive patients, 192 (51%) were type A and 188 (49%) were type B. Hemagglutinin subtyping of type A viruses detected 137 (71%) A/H1 and 55 (29%) A/H3, but no A/H5 or other novel influenza strains. The frequency of influenza cases was highest among children aged under 5 years (44%), while the proportions of laboratory confirmed cases was highest among participants aged 11–15 (18%). We applied kriging, a geo-statistical technique, to explore the spatial and temporal spread of influenza and found that, during 2008, influenza was first identified in large port cities and then gradually spread to other parts of the country. We identified a distinct influenza peak during the rainy season (May–September).

Conclusions/Significance

Our surveillance data confirms that influenza is prevalent throughout Bangladesh, affecting a wide range of ages and causing considerable morbidity and hospital care. A unimodal influenza seasonality may allow Bangladesh to time annual influenza prevention messages and vaccination campaigns to reduce the national influenza burden. To scale-up such national interventions, we need to quantify the national rates of influenza and the economic burden associated with this disease through further studies.  相似文献   
103.
Piperazine-bisamide analogs were discovered as partial agonists of human growth hormone secretagogue receptor (GHSR) in a high throughput screen. The partial agonists were optimized for potency and converted into antagonists through structure–activity relationship (SAR) studies. The efforts also led to the identification of potent antagonist with favorable PK profile suitable as a tool compound for in vivo studies.  相似文献   
104.
Isolation and Counting of Athiorhodaceae with Membrane Filters   总被引:4,自引:3,他引:1       下载免费PDF全文
The number, type, and distribution of Athiorhodaceae in two Central Pennsylvania artificial lakes were investigated with an anaerobic modification of the membrane filter technique.  相似文献   
105.
Incubation of (R)-tazofelone and (S)-tazofelone in rat, dog, and human liver microsomes demonstrated that the (R)-tazofelone enantiomer was more rapidly metabolized, with two diastereomeric sulfoxides as the major metabolites formed in all three species. The two diasteresomers epimerized at physiological pH, therefore total sulfoxide formation rates were measured. The formation of the total sulfoxide metabolites followed Michaelis-Menten kinetics. The K(m), Vmax, and intrinsic formation clearance (Vmax/K(m)) values were determined in rat, dog, and human liver microsomes. The intrinsic formation clearance of sulfoxide from (R)-tazofelone exceeded that of (S)-tazofelone in all three species. In vivo studies in rats and dogs dosed orally and intravenously confirmed the stereoselective metabolism of tazofelone observed in vitro. Plasma concentrations of (S)-tazofelone exceeded (R)-tazofelone in rats and dogs by a factor of 3 to 4. In rat portal plasma, both enantiomers were of approximately equal concentration after oral dosing, indicating similar absorption. The half-lives of tazofelone and total sulfoxides in rats were 3.5 and 2.8 h, respectively. In dogs, the half-lives of tazofelone and total sulfoxides were 2.2 and 5.5 h, respectively. Plasma clearance was 2.3 l/h in rats and 1.4 l/h in dogs, and the volumes of distribution were 12 and 4.5 l, respectively, in rats and dogs. Both enantiomers were highly bound to plasma proteins to a similar extent in both species.  相似文献   
106.
Methods for modeling sets of complex curves where the curves must be aligned in time (or in another continuous predictor) fall into the general class of functional data analysis and include self-modeling regression and time-warping procedures. Self-modeling regression (SEMOR), also known as a shape invariant model (SIM), assumes the curves have a common shape, modeled nonparametrically, and curve-specific differences in amplitude and timing, traditionally modeled by linear transformations. When curves contain multiple features that need to be aligned in time, SEMOR may be inadequate since a linear time transformation generally cannot align more than one feature. Time warping procedures focus on timing variability and on finding flexible time warps to align multiple data features. We draw on these methods to develop a SIM that models the time transformations as random, flexible, monotone functions. The model is motivated by speech movement data from the University of Wisconsin X-ray microbeam speech production project and is applied to these data to test the effect of different speaking conditions on the shape and relative timing of movement profiles.  相似文献   
107.
We show that the kinetic mechanism of the DNA (cytosine-N(4)-)-methyltransferase M.BamHI, which modifies the underlined cytosine (GGATCC), differs from cytosine C(5) methyltransferases, and is similar to that observed with adenine N(6) methyltransferases. This suggests that the obligate order of ternary complex assembly and disassembly depends on the type of methylation reaction. In contrast, the single-turnover rate of catalysis for M.BamHI (0.10s(-1)) is closer to the DNA (cytosine-C(5)-)-methyltransferases (0.14s(-1)) than the DNA (adenine-N(6)-)-methyltransferases (>200s(-1)). The nucleotide flipping transition dominates the single-turnover constant for adenine N(6) methyltransferases, and, since the disruption of the guanine-cytosine base-pair is essential for both types of cytosine DNA methyltransferases, this transition may be a common, rate-limiting step for methylation for these two enzyme subclasses. The similar overall rate of catalysis by M.BamHI and other DNA methyltransferases is consistent with a common rate-limiting catalytic step of product dissociation. Our analyses of M.BamHI provide functional insights into the relationship between the three different classes of DNA methyltransferases that complement both prior structural and evolutionary insights.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号